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Abstract—Undesirable reflections contained in photos taken in front of glass windows or doors often degrade visual quality of the image.
Separating two layers apart benefits both human and machine perception. The polarization status of the light changes after refraction or
reflection, providing more observations of the scene, which can benefit the reflection separation. Different from previous works that take
three or more polarization images as input, we propose to exploit physical constraints from a pair of unpolarized and polarized images to
separate reflection and transmission layers in this paper. Due to the simplified capturing setup, the system is more under-determined

compared to the existing polarization-based works. In order to solve this problem, we propose to estimate the semi-reflector orientation
first to make the physical image formation well-posed, and then learn to reliably separate two layers using additional networks based on
both physical and numerical analysis. In addition, a motion estimation network is introduced to handle the misalignment of paired input.
Quantitative and qualitative experimental results show our approach performs favorably over existing polarization and single image based

solutions.

Index Terms—Reflection separation, polarization, deep learning.

1 INTRODUCTION

EMI-REFLECTORS like glass windows reflect light from
S the side of photographers, and the taken photos are often
mixtures of two layers of the scene: the layer transmitted
through the glass and the other layer reflected by the glass.
Separating the reflection and transmission layers enhances
the visual quality of images and also benefits downstream
computer vision tasks, such as image classification and
semantic segmentation. However, it is not an easy task
because recovering two images from a single blended image
is highly ill-posed and the number of unknowns is twice as
many as that of given measurements.

To tackle this challenging task, researchers tend to make
the layer separation constrained by introducing assumptions
and priors. Strong priors crafted from image formation
models or natural image statistics, e.g., gradient sparsity
[1], different blur levels of estimated layers [2], [3] and ghost
cues [4], assist in solving the problem if the assumed priors
are well observed in the input. However, these approaches
are likely to produce unsatisfactory results, when they are
applied to images that obey disparate priors. As deep
learning flourishes in recent years, researchers adopt deep
convolutional neural networks to address the limitation of
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handcrafted priors. For example, CoRRN [5] introduces a
concurrent model to tackle this problem in a cooperative
and unified framework. Perceptual loss [6], the alignment-
invariant loss [7] and other effective objective functions are
applied to this task to generate compelling results.

The problem naturally becomes less ill-posed if multiple
images are captured from different viewpoints (e.g., five
images in [8]) or different polarization angles (e.g., at least
three images in [9], [10]). The motions between the layers
present in multiple images provide a strong and effective
constraint, but aligning multiple-view images contaminated
by reflections is not a trivial task [8]. Although additional
information is extracted from three polarization images [10],
[11], the separation is still under-determined and more priors
are required for the solution. Assuming uniform polarization
properties across the image, the separated images generated
from pixel-wise calculation [9] or iterative optimization [10]
are often affected by calculation artifacts and may deteriorate
in disparate lighting conditions. The learning-based method
[12] considers the intensity difference and pixel information
of three input images, but hardly exploits the physical model.
Besides, rotating a polarizer to capture multiple images
doesn’t suffer from the alignment issue [10], [12], but it
requires skillful operations and the polarized images always
filter part of the incoming light.

In this paper, we propose to separate reflection and
transmission layers using a pair of unpolarized and polarized
images. Such a setup takes fewer images than existing
polarization-based methods [10], [12], [14], [15], [16], and
keeps an unpolarized image to maintain sufficient luminous
flux (i.e., perceived power of light), which always requires
careful consideration in designing of a practical camera
system, especially for mobile platforms. Given a pair of
(un)polarized images as input (Figure 1-Input), separating
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Fig. 1: The overall view of our framework. Our network takes a cascaded architecture with four modules: semi-reflector
orientation estimation, polarization-guided separation, separated layers refinement, and cross-line suppression. Given a
pair of unpolarized and polarized images as input, an initial separation guided by the polarization image formation model
suffers from regional artifacts like “cross lines”; these artifacts can be partially suppressed by a refinement network [13]; by
introducing a physics-guided CL probability map and a cross-line suppression module, we can obtain further refined results

with less artifacts.

the reflection and transmission layers is still an ill-posed
problem, but we find that semi-reflector surface normal
encodes essential polarization information of the scenes
and facilitates the solving process. By assuming the semi-
reflector is mostly planar, only two planar parameters can
determine the complete physical image formation model that
encodes the solution to layer separation. Based on these
observations, we propose an end-to-end physics-guided
deep neural network for reflection separation using two
(un)polarized images.

The proposed network takes the cascaded architecture
consisting of four parts based on the physical and mathemat-
ical analysis. At first, we design a semi-reflector orientation
estimation module to predict the two crucial variables for
a well-posed physical image formation model. Then, ac-
cording to the physical image formation model, we design a
polarization-guided separation module which could generate
the initial separation (Figure 1-Initial separation) based on
the estimated coefficients and input images. It is noted that
the polarization-guided separation is purely based on the
physical model which has no parameters to be learned.

Due to the error in coefficient estimation and the non-
linear effect in real scenes, the initially separated layers may
not be satisfying as expectation. Moreover, owing to physical
limitations of the polarization based image formation model,
the results generated from the area with low zenith angles
tend to be downgraded and unstable, which is well known
in shape from polarization [17], and the initial results might
be also affected by regional artifacts, distributed like “cross
lines” (Figure 1-Initial separation).

So we further design a refinement module and a cross-line
suppression module to improve the initial layer separation.
The refinement module is built based on the encoder-decoder
architecture, aiming to enhance visual quality. For leveraging
information in different aspects, we employ perceptual loss
[18] for overall integrity and MSE loss as a pixel-level
constraint in the training stage. The majority of artifacts
are eliminated after the refinement, but there still remains
residual artifact in the output separation (Figure 1-Refined
separation). These residual artifacts actually correspond

to special polarization angles or low zenith angles of the
incident light rays. Based on the analysis of the cross-line
effect, in the end, we propose to automatically annotate the
cross-line area by a CL probability map, and design a cross-
line suppression module to tackle such regional artifacts
(Figure 1-Cross-line suppressed separation).

We show that our separation framework grounded on
the imaging model exploits physical information effectively
and enhances the overall performance (Figure 1-Output). We
compare our method with the state-of-the-art methods on
both synthetic data and real-world images. On the basis of
physical derivations, the unified framework works well on
wild images. By further introducing a motion estimation
network, our model can handle the small misalignment of
the (un)polarized images. The main contributions of this
paper can be summarized as follows:

e We propose to solve reflection separation using a
pair of unpolarized and polarized images, which
integrates polarization cues with a simpler and light-
efficient setup;

o We propose a unified end-to-end deep-learning frame-
work with well-designed modules based on both
the physical image formation mode and numerical
analysis;

o We demonstrate that our method separates the reflec-
tion better than the state-of-the-arts, and can handle
regional artifacts inherited in theoretical models and
small misalignment in practical setups.

A preliminary version of this work appeared in [13],
and in this paper we extend it in three aspects. First, we
analyse the cross-line formation and propose a CL probability
map for annotating cross-line regions and introduce a cross-
line suppression module for mitigating the cross-line effect
in the local regions. Second, we enhance the network by
improving the architecture and introducing the perceptual
loss [18] to improve visual quality of final results. Third, we
study the influence of the misalignment of the (un)polarized
images and show that our method could handle this using
an off-the-shelf optical flow network as a pre-processing step.
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Additional experiments and ablation studies are added to
demonstrate the improvement over [13].

The remainder of this paper is organized as follows. In
Section 2, we start with an introduction of existing works
relevant to polarization methods and the image separation.
Then Section 3 and Section 4 introduce the physical image
formation model and our proposed method, respectively.
Ablation studies, experimental results, and discussions on
misaligned data are presented in Section 5. Finally, we
conclude the paper in Section 6.

2 RELATED WORK
2.1

In terms of input, reflection separation can take a single
image or multiple images. The single image problem has
the most relaxed requirement, since it only needs an image
captured by an ordinary camera in the wild. But such a
problem is also highly ill-posed, and priors formulated using
hand-crafted priors [1], [2], [3], [4], [19], [20] or features
learned from large-scale training data [6], [21], [22], [23], [24]
are explored to facilitate the separation. By taking multiple
images from different viewpoints, the difference of projected
motion from reflection and transmission layers due to the vi-
sual parallax provides useful cues to the separation [25], [26],
[27]. By taking multiple images under different polarization
angles, the differently polarized images provide “indepen-
dent” representations of reflection and transmission layers
based on the physical image formation model to leverage the
separation using independent component analysis [28], [29],
[30], closed form expressions [9], [10], or deep learning [12].
Multiple images usually bring more promising separation
quality than relying on only a single image, but request more
complicated and careful image capturing operations.

In terms of solutions, reflection separation can be
solved by non-learning based methods or learning methods.
Adopted priors of reflection and transmission layers by
non-learning based methods include the sparse gradient
prior [1], [19], blur level differences between two layers [2],
the ghosting effect due to thick glass [4], [31], and the
Laplacian data fidelity term [20]. These gradient cues guiding
separation can be extracted from manual annotation [1]
and defocus disparity of dual pixel sensors [32]. Recently,
the symmetry of reflection is utilized to remove reflection
artifacts in the panorama [33]. Such handcrafted priors
may get violated in various real scenarios when expected
properties are weakly observed. Learning based methods
are benefited by the comprehensive modeling ability of deep
neural networks. It can be solved by learning the gradient
inference and image restoration sequentially [21], [34] or
concurrently [22], by incorporating perceptual losses [6] or by
considering bidirectional constraints [23]. The laborious data
collection process of paired images hinders the generalization
ability of learning methods, which encourages researchers
to propose the alignment-invariant loss function [7] and
develop the weakly-supervised framework [35] exploiting
misaligned training data. With differently polarized images
available, a simple encoder-decoder architecture is shown to
be effective for separating two layers using physics-based
image formation model [12] or polarization information such
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as the degree of polarization and the angle of polarization
[15].

Our work belongs to the learning based approach using
multiple images and physical constraints. Different from
previous works exploring polarization cues [9], [10], [12], [15]
that require at least three images with different polarization
angles, we take a pair of unpolarized and polarized images
and learn to solve a more under-determined system.

2.2 Applications of Polarization

The polarization state of incident light provides cues to the
reflection surface and transparent medium, which has been
widely used in 3D vision. The surface orientation can be
predicted by exploiting polarization properties of reflected
light (Shape-from-polarization, SfP). The SfP cues provid-
ing the phase angle and degree of polarization, however,
introduce ambiguities of surface normal either. Boundary
constraints [36], [37] and convexity assumptions [38] are
proposed to disambiguate the surface normal. Further, a
number of methods combine the polarimetric information
with additional constraints, e.g., multi-spectral measurements
[39], depth maps obtained by an RGBD camera [40], [41],
and shape-from-shading information [42], [43], [44], in which
ambiguities are resolved and more accurate estimation of
surfaces can be obtained. In multi-view stereo, polarization
methods help in enabling transparent surface modeling [45]
and recovery of surface shape in featureless regions [46].
Stereo polarization cues have been used for depth estimation
[47] and dense SLAM reconstruction [48]. Recent works
propose to estimate epipolar geometry by phase information
[49] or geometric information available from polarization
cameras [50].

In computational photography domains, polarization is
used in special imaging systems. For example, scattering of
sunlight in the atmosphere creates a characteristic polariza-
tion pattern in the sky, which motivates researchers to design
the visual compass system for estimating sun direction and
its covariance [51]. The polarization cues also enable non-
line-of-sight (NLOS) imaging by improving the conditioning
of the light transport matrix [52]. Polarization methods are
also used in imaging applications, e.g., image dehazing [53],
image mosaicing, panoramic stitching [54], and reflection
separation [9], [10], [15].

3 PHYSICAL IMAGE FORMATION MODEL

Given a pair of unpolarized and polarized images captured
at the same view, we aim to separate the reflection layer
and the transmission layer. In this section, we will first
review the reflection and transmission model, and describe
the relationship between polarization properties and semi-
reflector surface geometry. By assuming the medium is
planar, we prove that the separation tightly relies on only
two parameters of the plane. Then we analyse the cross-line
artifacts that might appear in the initial separation.

3.1

Suppose I;(x), the intensity of light from the transmission
scene, and I,.(x), the intensity of light from the reflection

Reflection and Transmission Image Formation
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scene, are both unpolarized. After being reflected or trans-
mitted, the intensity of light observed at pixel x changes
depending on 6(z), the angle of incidence (Aol) at the
reflected point corresponding to pixel z, as the following [10].
For conciseness, we omit the reference of pixel z in the rest
of the paper.

RO RO),  TO+TO),
2 2

where R represents the relative strength of light reflected
off the glass surface, T' represents the relative strength of
light transmitted through the glass, and subscripts L and ||
correspond to the polarized components perpendicular and
parallel to the plane of incidence (Pol), respectively.

When we place a linear polarizer with a polarization
angle ¢ in front of the camera, according to Malus” law [55],
the received light intensity is

Ry (0)cos® (¢ — ¢1) + Ry (6) sin® (¢ — m)

I, +

Iunpol = I,

Ipol— 9
2
T (0)cos? (9~ 6.) L TyO)si® (601, "o
2 7

where ¢, is the orientation of the polarizer for the best
transmission of the component perpendicular to the Pol. For
simplicity, we denote

§=R1(0) + Ry(0), ®3)
(=Ry(0)cos® (¢ —¢1) + Ry()sin® (o — ¢1).  (4)

The glass can be considered as a double-surfaced semi-
reflector, and we have R, () + T (f) = 1 and R)(6) +
T)(0) = 1 for each pixel  approximately [10]. Under the
double-surface assumption, R (¢) and R () are given by
2sin? (6 — 0,(0, k))
sin? (0 — 0,(0, k)) + sin? (0 + 6,(0, k)’
2tan? (0 — 0,(0,K))
tan? (6 — 0,(0, ) + tan? (0 + 0,(0,k))’
in which & is the refractive index set to be 1.474 for regular
glass, and 6, (6, ) = arcsin (£ sin 6) according to Snell’s law
[55]. Then Equation (1) and Equation (2) can be rewritten as

€ —¢
2 2 @)

R, (0) = )

Ry (0) = (6)

I + Ita

I unpol =

4

®)

where £ € (0,2) and ¢ € (0,1). Given the value of £ and
¢, the reflection layer and the transmission layer can be
computed by

¢ 1-¢
Lot = 31+ =5~ 1,

ol =

_ (2 - g)IPOI - (1 - C)Iunpol
_ oS unpol = Elpal
I, =2 9 —¢ , (10)

except for 2¢ = { where ¢ — ¢ = £45° or £135°. The angle
of a polarizer ¢ can be measured by calibration. Associated
with surface geometry of semi-reflector, ¢, is not constant
but spatially varying over the whole image plane. There may
exist trivial ¢ — ¢ corresponding to a few pixels, which can
produce cross-line artifacts in the initial separation. We will
discuss this issue in Section 3.3.

In short, the reflection layer I,. and the transmission layer
1; are determined by £ and ¢ when a pair of unpolarized and
polarized images are given.

3.2 Semi-reflector Surface Geometry

In order to recover the reflection layer I, and the transmission
layer I, we first have to solve { and ( according to Equations
(7) and (8), which can be further computed by 6 and ¢ — ¢
according to Equations (3) and (4). In this section, we will
describe how we compute § and ¢ — ¢ for each pixel
given the surface normal of the semi-reflector and camera
parameters.

We assume the semi-reflector has a planar surface, and the
camera coordinate coincides with the world coordinate in z—
and y—axis. Then the semi-reflector plane can be expressed
as

sina-x —cosasinf -y + cosacos B(z — z9) =0, (11)

where o represents the rotation angle around y-axis, 3
represents the angle around z-axis, and zp denotes the
distance between the imaging plane and the glass. The plane
normal is thus given by

. . T
Ngles = [ Sina —cosasinf cosacosf | (12)

Let f be the focal length of the camera, and (p, py) be the
coordinate of the principal point. For the pixel z located at (u,
v) on the image plane, we can easily compute the direction
vector of its corresponding 3D point as follows:

X=[u—p, v—py, []. (13)

Let X = X/ ||X]|, then the Aol corresponding to pixel =
can be calculated as

0 = arccos ]nglass -X}. (14)

We calculate the absolute value for the above term since
6 € [0,90°). The normal of Pol npy; = (Zpol, Ypols ZPOI)T is
then calculated as

Npol = Nglass X Xa (15)

- . . . T
and the projection of np, on the imaging plane is (Zpor, Ypor)
denoting the orientation of ¢ . For ¢ € [—180°,180°), we

have
Ypol

¢, = arctan (16)

JJPoI
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We combine the reflection and transmission image for-
mation and semi-reflector surface geometry to compute ¢ |
and 0 for each pixel. Note that they are not affected by z,
because physically the transparent plane can be projected
to parallel plane with arbitrary intercept about z-axis and
mathematically before computing arctan and arccos, 2o has
been eliminated according to Equation (16).

In short, it is the normal of glass that matters, and we only
need to estimate coefficients a and S to determine the semi-
reflector plane. Different from other numerical expressions
in this paper, coefficients o and 3 are constant at each pixel
of the same image, respectively.

3.3 “Cross Line” Artifacts

In Section 3.1, when we calculate the reflection and transmis-
sion layers by Equations (9) and (10), cross-line-distributed
artifacts may affect the initial separation results as shown in
Figure 3a. To figure out how it happens, we rewrite Equations
(9) and (10) as

I. = unpol + @T(G)(D(d)l) (21 ol
©:(0)®(¢1) (21,

in which ©,. and ©; denote two functions of §, corresponding
to the reflection and transmission layer respectively, and ®
denotes the function of ¢, as follows:

- Iunpol) ; (17)

I = unpol — pol — Iunpol) ’ (18)

_2- (RL( ) \(9))
R, ( )+ RH(Q)
O4(0) = R.(0)— Ry (0) (20)
(o) = Wl—flh). (21)

Given the two observed images lunpot and Ipo and the
estimated physical coefficients 6 and ¢ |, we can compute
reflection and transmission layers. To analyse how physical
information influences the calculated layers, we plot the
magnitude curves of the above three functions in Figure 4.
For the terms ©,./;(¢) and ®(¢_ ), their values increase when
the variables approach some trivial points, e.¢., § = {0°,90°}
and ¢ — ¢, = {£45°,£135°}, greatly magnifying the
fractional noise and quantization error in mixture images
and making part of the separated layer deteriorate. Based
on the physical model, ¢ — ¢ is always radially distributed
and centered at the point § = 0° as shown in Figure 3b. Thus,
artifacts are magnified to obviously form cross lines over the
image.

From the perspective of imaging, revisiting Equations
(1) and (2), we find the intensities of the unpolarized image
Linpol are just twice as those of the polarized image I,
on pixels § = 0° or ¢ — ¢, = {£45°,£135°}, in which
the two input images provide the same information about
the mixture scene. Lack of necessary polarization cues, the
calculation results degrade around these pixels.

We try to handle the cross-line issue by adding a
regularization term or with the linear constraints that the
intensity values are within (0,1) using the alternating
direction method of multipliers (ADMM) [56], but they

- =100

- '—150
(a) Initial separatlon (b) Parameter map (c) CL probability map

Fig. 3: (a) Initially separated layers I and I] are calculated
by Equation (9) and (10). Due to the numerical problem,
regional artifacts in the form of “cross lines” can be obviously
observed in separated layers. (b) An example of the value
distribution of physical parameters: angle of incidence 6
and ¢ — ¢1. ¢ — ¢ is radially distributed and its value
changes around the point = 0. So the artifacts in pixels
¢ — ¢ = {£45°,+£135°} are distributed as “cross lines”,
and the intersection of cross lines lies in the point § = 0.
(c) The CL probability map (stretched and scaled for better
visualization) stemmed from physical parameters. For pixels
in the initially separated images, larger values of the map
represent higher probabilities of being affected by cross-line
artifacts.
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Fig. 4: The magnitude curves of the functions (a) ©,./; and (b)
® regarding § and ¢ — ¢ . At some trivial point, the values
of these two functions increase dramatically, which magnify
subtle noise and produce unreliable separated layers.

135 180

fail to solve the problem well. Please refer to Appendix
A for more details. To alleviate the cross-line effect, we
further propose to enhance the network with a cross-line
suppression module. Based on the observation that the area
affected by “cross line” tends to be with large product terms
(ie., ©,/:(0)®(#1)) in Equation (17) and Equation (18), we
present the CL probability map, shown in Figure 3¢, for
annotating the unstable regions in initially separated layers,
which is denoted as

M, = 2sigmoid (|0, (0)®(¢L)|) — (22)

M, = 2sigmoid (|0:(0)®(¢L)|) — (23)

of which larger values represent higher probabilities that
the pixels in initial separation are affected by the cross-line
artifacts.
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With the CL probability map annotating the cross-line
area, the cross-line suppression module is designed for
further improvement of separation results and we will
introduce it in Section 4.1.

4 REFLECTION SEPARATION NETWORK

In this section, we introduce the proposed reflection sep-
aration network which makes use of the physical model
discussed in Section 3, and details about loss functions and
network training.

4.1

As shown in Figure 1, our network takes a cascaded archi-
tecture which consists of four modules: semi-reflector orien-
tation estimation, polarization-guided separation, separated
layers refinement, and cross-line suppression.

Taking a pair of unpolarized and polarized images, the
semi-reflector orientation module aims to predict coefficients
of the glass plane, i.e., & and /3. As we only need to estimate
two parameters, the pose estimation module is pretty light
and consists of seven convolutional layers followed by two
fully connected layers.

The polarization-guided separation module takes o and
B as inputs, and computes the reflection layer I and
transmission layer I;. This module only relies on the physical
image formation model in Section 3 using analytic equations,
so we do not have any parameters to learn here.

The separated layers using equations may not be satis-
factory due to the gap between the physical model and real
data. Part of the transmission layers may be still affected
by reflection artifacts due to inevitable estimation error of
physical parameters. The numerical problem also occurs
when the denominators in Equation (9) and Equation (10)
approach zero, and the computed results are degenerated as
mentioned in Section 3.3. Fortunately, this happens only for a
few of pixels and the remaining non-degenerated calculations
can guide a refinement network to enhance separation results.
We therefore further feed I/ and I] with original input images
and ¢, ¢ into the separated layers refinement module to
improve the initial estimation. The refinement module has
a widely adopted encoder-decoder architecture. In detail,
the encoder consists of eight convolutional layers and the
decoder consists of five deconvolutional layers. We denote
the refinement network as

jrajt = fRF (Iunpolvjpola 7{’[1?7574) .

In contrast to [13], we replace 7 x 7, 5 X 5 convolutional
kernels to 3 x 3 ones, and add a 1 x 1 convolutional layer at
the end of the deconvolutional blocks.

As shown in Figure 1-Refined separation, fed with the
initial separation {I,I;} that are affected by cross-line
artifacts, the refinement module has removed most of the
contamination globally, but cross lines obviously remain in
intermediate separation, especially in the reflection layer.
To eliminate the regional artifacts in the reflection and
transmission layers and further improve the visual quality of
separated layers, we present the cross-line suppression mod-
ule by taking the concatenated input (un)polarized images
and the estimated layer from the refinement module. Aiming
at improving affected regions, the cross-line suppression

Network Architecture

(24)

6

network is shallow and consists of four ResNet [57] blocks
with the output:
f’ra ft = Fcis (Iunpola Ip017 jrv ft) . (25)
Finally, we linearly combine f,,., ft and f,., ft, and produce
the final separation as the following;:

I =L(1-W)+LW, (26)

IF =L,(1— W)+ LW 27)

In practice, we adopt the CL probability maps of transmission
layers M; as weighting parameters W, since M; and M,
corresponding to the same image pair have the identical
distribution, and only vary in magnitude, as shown in Figure
3c. Empirically, we find that M, reflects the affected regions
better than M,..

4.2 Loss Functions

Pixel loss. In image reconstruction, pixel-wise loss is one of
the popular and efficient objective functions that supervise
the network producing results close to the references. We
adopt mean squared error (MSE), denoted as Lysg, to
measure the distance between estimated images and ground
truth:

Lyixel = Laise (17, 1) + Lwsg (17 1) - (28)

Perceptual loss. The perceptual loss [18] has been proved
effective in image decomposition tasks [6], and it helps to
preserve details and enhance perceptual quality of output
images. We use the pre-trained AlexNet for generating the
activation layer:

Lipws = [[W(L;) — U(L)[l; + [[U(L7) — Y(L)]l, -

For semi-reflector estimation training, MSE is adopted
as the error metric. We hope the reconstruction network to
preserve details in the original image as many as possible,
so we define the loss function for refinement network and
cross-line suppression module as:

(29)

Liotal = M1 Lpixel + A2 Lrprps, (30)

where \; 5 are the weighting parameters of the pixel loss and
the learning perceptual loss, respectively.

4.3

We implemented our model using PyTorch deep-learning
framework [58] and used the Adam [59] solver with default
parameters. To improve the performance of our model, the
multi-stage method was adopted for training. We first trained
the orientation estimation network with an initial learning
rate of 0.001 for 30 epochs until convergence. Given the
predicted planar coefficients, we successively trained the
refinement network and the cross-line suppression module
for 50 epochs with the same strategy: the learning rate was
initially set to 4 x 10~* and halved every 15 epochs. For
the final separation results, we fine-tuned the refinement
module with the cross-line suppression module based on
Equation (26) and Equation (27) for 40 epochs. The learning
rate was 1 x 107% and halved every 10 epochs. Additionally,
hyperparameters A, 5 were set to be 1,0.05 in training,
respectively.

Implementation Details
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4.4 Training Data Generation

The deep-learning method tends to be data-hungry, but it
is laborious to obtain pairwise reflection and transmission
images with both polarized and unpolarized observations at
a large scale. It is possible to directly use Equation (1) and
Equation (2) to generate the synthetic data, but it is expected
that the network trained with such data may not generalize
well on real scenarios. Therefore, we propose an effective
data generation pipeline to better match images of real-world
scenes.

At the first step, we randomly pick two images from
PLACE2 dataset [60] as original reflection and transmission
layers. Based on a commonly adopted assumption that
people take photos focusing on the background scene (the
transmission layer) so the reflection layer is likely to be blurry
[21], a Gaussian smoothing kernel with a random kernel size
in the range of 3 to 5 pixels is applied to a portion of reflection
images. We also need to simulate the coefficients o and
of the semi-reflector plane. We assume people rarely take
photos in front of the glass that inclines by a weird angle,
e.g., glass nearly orthogonal to the image plane, so we set
a € (—60°,60°) and 8 € (—60°,60°). We render a total of
55,000 sets of synthetic images, where 50, 000 sets are used
for training, and 5, 000 sets used for testing.

For the virtual camera, we set the focal length as 1.4
times as long as the image width, and the image resolution
as 256 x 256. By fixing these factors, the normal of glass is
specified, § and ¢, can be derived from Equation (14) and
Equation (16), respectively. ¢ can be an arbitrary value in
the range of [0, 27), as long as the polarization images are
captured under the same polarizer angle. In our experiment,
we set ¢ to be 0. Additionally, real-world scenes are generally
high-dynamic-range (HDR), so we apply dynamic range
manipulation as conducted in [12] to simulate the appearance
of reflections in a more realistic manner. Finally, the synthetic
unpolarized image Iynpor and the polarized image I, can be
obtained by Equation (7) and Equation (8).

5 EXPERIMENTAL RESULTS

We evaluate our method on both synthetic and real data
with extensive experiments including the comparison with
related work and the ablation study. Besides, we simulate
misalignment between the (un)polarized images, which
may happen in real cases, and test the proposed model
on the misaligned pairs. For all quantitative evaluations,
both the peak-signal-to-noise ratio (PSNR) and the structural
similarity index measure (SSIM) [61] are used to evaluate the
quality of separated images.

5.1 Ablation Study

To understand the impact of each module and loss function
on the final performance, we conduct a comprehensive
ablation study by disabling each component respectively.
Results are shown in Table 1 and Figure 5. We first verify the
contribution of the polarization-guided separation module
by directly estimating I, and I, from the refinement network
(without inferring «, # and the initially separated layers
{I ;7 I ; } first). In other words, we also use an encoder-decoder
architecture to estimate separation directly from a given

7

TABLE 1: Quantitative evaluation results in ablation study.

Transmission Reflection
SSIM PSNR SSIM  PSNR
Ours 0.0812 33.32 0.9526 30.16
Cross-line suppression ) o799 5999 (9498  29.79
module
Refinement module 0.9718 31.56 0.9183 28.60
Polarization-guided 0.8558 21.00 0.6497 15.88
module
Refinement module
w/o LPIPS 0.9695 31.66 0.9062 28.11
Refinement module 0.9668 31.31 0.8925 27.31
w /0 ori. est.
Ours pre. [13] 0.9659 31.12 09010 27.81
Ours on
S-bit dataset 0.9599 30.56 0.6869  20.28
Ours pre. [13] on 0.0708 28.23  0.8953  20.92

8-bit dataset

pair of (un)polarized images. SSIM and PSNR averaged
over 5,000 validation images are shown in “w/o ori. est.”
row of Table 1. We can see that, more prior knowledge
encoded in the network facilitates the image prediction, and
the orientation estimation with only two parameters is easier
to learn and also better than directly estimating £ and ¢ for
each pixel. To verify the effectiveness of our pipeline, we
quantitatively evaluate our intermediate steps, i.e., “cross-line
suppression module”, “refinement module”, “polarization-
guided module”, and the results listed in Table 1 show
the effectiveness of the physical guidance and boost from
cascaded networks. The intermediate separation is shown
in Figure 5. We omit results of the cross-line suppression
module, since they are similar to the final output visually.
In the polarization-guided module, rough transmission and
reflection layers are generated according to estimated plane
coefficients, although they are affected by regional artifacts.
Next, the refinement network eliminates most of the contam-
ination and improves the visual quality of the separation.
At the final step, the residual of cross lines (especially in
the reflection) is attenuated by the cross-line suppression
module, and the final re-weighting method boosts the overall
performance and generates compelling results by integrating
outputs of the two modules.

We further evaluate different loss functions, and train our
network without the perceptual loss. The results are listed
in “w/o LPIPS” row of Table 1. We find the perceptual loss
is particularly useful in improving the visual quality of the
layer estimation, though the evaluation indexes are close to
the baseline of Refinement Module.

Our preliminary work [13] adopts the gradient loss
instead of perceptual loss and produces similar results as
Refinement module w/o LPIPS, as listed in “Ours pre. [13]”
row of Table 1. Our new framework benefits from supervision
with high-level perceptual loss and enhancement of the cross-
line suppression module, and shows better results than [13].

We also evaluate the effect of quantization error in
polarization-guided separation, since the initially separated
results stem from pixel-wise calculation. Note that our model
is trained on 16-bit-format dataset. In this experiment, we
feed our model with 8-bit-format input images. As shown
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Polarization-guided separation

Transmission I,  Reflection I,

I unpol

Refined separation

Transmission [

Output separation

Reflection I, Transmission 1, +  Reflection I}

Fig. 5: The separation results in intermediate steps and the final stage. Note that the polarization-guided module coarsely
separates reflections and transmissions, but suffers from the cross-line artifacts. Refinement part further improves the results,
but there still remain small artifacts in the cross-line regions. In the final stage, most of the artifacts are suppressed and

cleaner separation results are generated.

Tunpol Polarization-guided separation

Ipol Transmission I,  Reflection I,

Refined separation

Transmission [

Output separation

19-8

19-91

Reflection I,  Transmission I}

Reflection I

Fig. 6: Visual comparison between 8-bit and 16-bit (un)polarized images. The results generated from 8-bit images are affected
by more artifacts than those taking 16-bit images as input owing to the calculation error in the polarization-guided step.

in Figure 6 and Table 1, the reflections are greatly affected
by the cross-line effect and the quantitative indexes decline
largely. As we discussed in Section 3.3, the value of O,.(6)
corresponding to the reflection layer is several times as large
as the value of ©,(0) in the range of (0, 78°], which makes
the calculation of reflection layers become more susceptible
to small noise. While the transmissions are more robust to the
quantization error. When the previous model [13] is trained
and tested on 8-bit dataset, PSNR of the results is also worse
than that of the model trained on 16-bit-format images, as
shown in “Ours pre. [13] on 8-bit dataset” row of Table 1.

5.2 Evaluation on Synthetic Data

We use 5, 000 pairs of images from our synthetic validation
dataset with ground truth reflection and transmission layers
to quantitatively compare our method with state-of-the-art
approaches. ReflectNet [12] is a learning based method
using three polarized images; Zhang et al. [6], CoRRN
[5], ERRNet [7] are deep learning based solutions using
a single image. To test the performance of ReflectNet [12],
we generated two additional polarization images for each
pair of (un)polarized images in our dataset, and fine-tuned

ReflectNet using the Adam solver with a learning rate of
0.005 for 5 epochs.

The experimental results are shown in Figure 7 and
Figure 8, and the quantitative evaluation is listed in Table 2.
We can see that, in contrast to all the single-image based
methods, our method has much better performance, which
shows the advantage of the additional polarized image. We
only compare the transmission results of our method with
transmissions of other single-image-based methods, due to
their bad performance on reflection layers.

Our method also outperforms ReflectNet [12] which
requires three polarized images as input, especially in
terms of the quality of the reflection layer, although our
method only needs one polarized image in addition to an
unpolarized image. Moreover, our method performs the
best in suppressing undesired reflection in transmission
layers and recovers high-quality reflection layers as well,
as indicated by corresponding SSIM and PSNR values
under images in Figure 8. In order to compare our model
with ReflectNet thoroughly, we retrain ReflectNet on our
dataset with the same training strategy. Under this setup,
the quantitative results of reflection and transmission are
listed in “ReflectNet retrained” row of Table 2. We can see
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GT transmission Polarized img Unpolarized img

Qurs-initial

SSIM:0.8593 PSNR:24.85

QOurs-final

SSIM:0.9837 PSNR:44.41

CoRRN [5]

SSIM:0.8025 PSNR:21.15

ERRNet [7]

SSIM:0.7011 PSNR:24.00

Zhang et al. [6]

SSIM:0.8042 PSNR:16.11 SSIM:0.7690 PSNR:21.81

SSIM:0.9093 PSNR:20.72

SSIM:0.8646 PSNR:19.23

SSIM:0.9861 PSNR:34.95

SSIM:0.9796 PSNR:24.69 SSIM:0.9652 PSNR:23.06

SSIM:0.8928 PSNR:18.84 SSIM:0.7240 PSNR:14.37 SSIM:0.7663 PSNR:15.95

AR .
SSIM:0.7816 PSNR:17.14

SSIM:0.7640 PSNR:15.00

SSIM:0.8979 PSNR:17.65

Fig. 7: Quantitative and qualitative evaluation on synthetic data, compared with single-image methods including CoRRN [5],

ERRNet [7], and Zhang ef al. [6].

that even with this retrained ReflectNet still performs worse
than our refinement module. We also evaluate our initial
polarization-guided separation I and I, (“Ours-initial”)
in Table 2, and we can see that the initial separation is
effective, and both the refinement network and cross-line
suppression module facilitate attenuating the artifact and

noise caused by rough estimation of { and (. At last, we
test our method against Gaussian noise added to images
with different standard deviations. The results are shown in
Table 2. We can see that the reflection results downgrade a lot
since the initially separated reflections are more sensitive to
noise referring to Section 3.3. In contrast to reflection results,
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Unpolarized img  Polarized img  Unpolarized img

Polarized img

SSIM:0.896 PSNR:19.52
Ours-initial

Input GT

10

UOISSIWISURL],

SSIM:0.9532 PSNR:25.38
T —

UOnOR[JY

UOISSIWISURI],

SSIM:0.9420 PSNR:30.05

SYR

5 ]

UOnOR[JY

SSIM:0.6189 PSNR:10.81

ReflectNet [12]

SSIM:0.9692 PSNR:32.65

Ours-pre [13]

SSIM:0.9849 PSNR:34.62
Ours-final

Fig. 8: Quantitative and qualitative evaluation on synthetic data, compared with methods taking multiple polarized images
as input, e.g., ReflectNet [12] fine-tuned on our dataset and the preliminary version of this work [13].

produced transmissions are more robust to the additive
Gaussian noise due to the high transmission-reflection ratio
in the unpolarized and polarized images. This phenomenon
is similar to that we feed our model with 8-bit-format
(un)polarized images.

5.3 Evaluation on Real Data

We use the Lucid Vision Phoenix! (grayscale, 16-bit format)
and Triton? (RGB, 8-bit format) polarization cameras to
capture the real dataset. The polarization camera can take
four images with different polarizer angles at a single shot.
We use three of them as input images to ReflectNet [12],
four of them as input to [15] and [16], and one of them
as the polarized image to our method. The unpolarized
input image is calculated by summing two polarized images
captured with orthogonal polarizer angles [55]. We conduct
qualitative comparisons on the real-world data, as displayed
in Figure 9, Figure 10, and Figure 11°. More results on the
real-world data are provided in Appendix C. These scenes
contain strong reflections with complex textures, and all the
single-image based methods fail to recover the transmissions
while removing the reflections. Thanks to the polarimetric
cues, ReflectNet [12], Lei et al. [15], Li et al. [16] and
our method all show obvious advantage over the single-
image based methods. ReflectNet [12] and our method

1. https://thinklucid.com/product/phoenix-5-0-mp-polarized-model /

2. https:/ /thinklucid.com/product/triton-5-mp-polarization-camera /

3. To test the grayscale images, we stack the single channel images
into 3 channels and convert the output images back to grayscale.

TABLE 2: Quantitative evaluation results on synthetic data.

Transmission Reflection

SSIM  PSNR  SSIM  PSNR
Ours 0.9812 33.32 0.9526 30.16
Ours-initial 0.8558 21.00 0.6497 15.88
ReflectNet finetuned  0.8988 25.91  0.7512  19.64
ReflectNet retrained  0.8659  25.71  0.7412  20.88
Ours-1%noise 0.9319 28.95 0.6308 20.00
Ours-initial 1%noise  0.7600 18.73  0.3585  12.29
Ours-2%noise 0.9119 28.06 0.5236 17.87
Ours-initial 2%noise  0.6845  17.47  0.2429  10.48

produce better separations. Compared to ReflectNet [12],
our method additionally exploits the semi-reflector geometry
and the physics-based imaging model to produce reliable
initial separations to the network rather than letting the
network conduct separation almost from scratch [12]. Due
to this encoded physical knowledge as well as the dedicated
network architecture, our framework is able to produce
compelling separation results by taking fewer input images
(with one of them unpolarized to capture more light) than
other polarization-based methods.

5.4 Dealing with Misaligned Inputs

When we take the polarized images with a single-view cam-
era, rotating, mounting, and unmounting the polarizer may
cause movement of the camera, and the camera parameters
might be slightly different in the two shots. Hence, the input
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Unpolarized img Polarized img Unpolarized img Polarized img Unpolarized img Polarized img

Transmission Reflection Reflection Transmission Reflection

Ours-initial

Ours-final

ReflectNet [12]

Wen et al. [24]

Zhang et al. [6]

Transmission

9

CoRRN [5] ERRNet [7] CoRRN [5] ENet [7] ~ CoRRN [5] ERRNet [7]

Fig. 9: Qualitative comparisons with ReflectNet [12], Wen et al. [24], Zhang et al. [6], CORRN [5], and ERRNet [7], evaluated
on real-world images (8-bit format) taken by a Lucid Vision Triton polarization camera. We only show transmission results
of CoRRN [5] and ERRNet [7], since they are designed for extracting transmission scenes only.

(un)polarized images are misaligned in practice. We further ~improve our method to tackle the slight misalignment! in the

1. Our method could handle this slight misalignment but may not
work on the dual-view misaligned images with relative large baselines,
which is elaborated in Appendix B.
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Lei et al. [15]

Zhang et al. [6]

Transmission

CoRRN [5] “ERRNet [7] CoRRN [5]

ERRNet [7] CoRRN [5] ERRNet [7]

Fig. 10: Qualitative comparisons with ReflectNet [12], Wen et al. [24], Lei et al. [15], Zhang et al. [6], CORRN [5], and
ERRNet [7], evaluated on real-world images (16-bit format) taken by a Lucid Vision Phoenix polarization camera. For better
visualization, the minimum and maximum intensity values of different algorithms are stretched in a consistent range.

paired inputs and test it on the synthetic data. Specifically,
we assume the camera positions of the two shots are close
enough that most of the pixels can be registered and the
occlusions caused by different views only cover a small part
in captured images. When generating the synthetic images,
we set the camera focal length as a normally distributed

random variable f ~ N(1.4,0.03) for data augmentation.
Changes in exposure and gain parameters are considered as
well: We re-scale the polarized images with a coefficient £
to simulate the exposure difference, where k ~{(0.8,1.1).
Moreover, to simulate the parallax motion between two
views, we generate a random global shift within 5 pixels
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Transmission Unpolarized img

Ours Li et al. [16] Ours

Fig. 11: Qualitative comparison with Li ef al. [16], evaluated
on images in the wild. Our method generates more reliable
results for the recovered transmission images.

Li et al. [16]

TABLE 3: Quantitative comparison between the proposed
pipeline with the alignment module and the pipeline without
alignment module, which is evaluated on the the misaligned
inputs.

Transmission Reflection

SSIM PSNR SSIM PSNR
Ours-initial w/o align ~ 0.3190  11.60 0.1284  6.566
Ours-initial w/ align 0.8106  18.17  0.5229 12.27
Ours w/o align 0.8191  22.27 0.2444 10.19
Ours w/ align 0.9449 27.81 0.7115 17.49

and apply a Gaussian deformation on its grid, based on
which we warp the images to produce misaligned polarized
images.

Misalignment can degrade the performance of our sep-
aration results, since our model relies on the pixel-wise
calculations in the initial separation. Thus, we introduce
the motion estimation network to predict the optical flow
between the polarized and unpolarized images, and to align
the images for further calculation. Specifically, we build the
optical flow model based on PWC-Net [62], and fine-tune
it on our synthetic dataset. Note that the warped polarized
images are hardly to be registered perfectly, which might
suffer from occlusions and pixel mismatch. To alleviate
the ghost effect caused by misalignment, we connect the
proposed method with the optical flow model in [62] as a
unified framework, and then fine-tune it on the misaligned
data until convergence. To simulate the slight misalignment
of the paired images, we use the polarization camera to
capture the two images with a manual displacement within
1 centimeter. The quantitative results on synthetic data are
listed in Table 3, and qualitative results on the synthetic and
the real-world images are shown in Figure 12. Fed with the
misaligned data, the polarization-guided module performs
badly, and our method fails to separate the reflections. After
adding the alignment module, our model still works well on
the misaligned images, thanks to the additional optical flow
estimation. Such handling of misalignment has the potential
to extend our method using multi-lens camera phones if
the registered raw data is accessible, with one of the lens
equipped with a polarizer. Moreover, we can design a new
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micro-polarizer sensor array to capture both polarized and
unpolarized images and avoid the alignment issue, which
is also interesting while beyond the scope of this paper. We
will consider these as future work.

6 CONCLUSION

We solve the problem of integrating polarimetric constraints
from a pair of unpolarized and polarized images to separate
reflection and transmission layers. To deal with the ill-
posedness introduced by using fewer polarized images,
we derive the semi-reflector orientation constraint to make
the physical image formation for layer separation valid
given our setup, and train a well-designed neural network
to refine the separated layers and eliminate the cross-line
effect, showing state-of-the-art performance. Our simple yet
unique capturing setup explores polarimetric constraints for
separating reflection and transmission layers as reliably as
existing approaches using three or more polarized images.
Besides, the newly added optical estimation module enables
registration of misaligned input, allowing our framework to
be potentially integrated into multi-lens camera phones, if
the registered raw data is accessible.

Our model assumes the semi-reflector approximately has
a planar shape. When it becomes a curved shape such as the
windshield in a car, our semi-reflector orientation estimation
module will fail, and thus the performance of our method
will deteriorate, and we will consider this as our future work.
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APPENDIX A

USING LEAST SQUARES WITH REGULARIZATION
AND ADMM IN INITIAL SEPARATIONS

In stead of directly solving Equation (7) and Equation (8) in
the main paper, we try to formulate the initial separation
as a linear least-squares problem and add L, regularization
terms to handle cross-line artifacts. Specifically speaking, the
linear equations,

2 _

Iunpol = glr + Tglta (1)
1 _

Ioa =S5+ 50, @)

can be converted into a matrix form,

Iunol _ £ 2 Ir
e -1V E ][R]0 e

For conciseness, we denote Equation (3) as
b = Ax. 4)

In order to solve the reflection and the transmission (x), we
formulate the separation as a least-squares problem:

min || Ax — b|[3. (5)

The cross-line artifacts are attributed to the zero division
when directly solving Equation (1) and Equation (2). We
apply an £, regularization term to penalize large values in
reflection and transmission layers, and derive the formula-
tion LS-regul.:

min [|Ax — b5 + XI5, 6)

*Authors contributed equally to this work. Part of this was finished while
working as a visiting student at Peking University. T Corresponding author.

e Y. Lyuand S. Li are with School of Artificial Intelligence, Beijing University
of Posts and Telecommunications, Beijing 100876, China. Email: {youweilv,
lisi}@bupt.edu.cn.

o 7. Cuiis with the State Key Lab of CAD&CG and the College of Computer
Science and Technology, Zhejiang University, Hangzhou 310058, China.
E-mail: zhpcui@zju.edu.cn.

e M. Pollefeys is with Department of Computer Science, ETH Ziirich, CH-
8092 Ziirich, Switzerland. Email: marc.pollefeys@inf.ethz.ch.

e  B. Shi is with the National Engineering Research Center of Visual Technol-
ogy, School of Computer Science and Institute for Artificial Intelligence,
Peking University, Beijing 100871, China. Email: shiboxin@pku.edu.cn.

where A denotes the weighting parameter of the regulariza-
tion term. Then we solve Equation (6) by the least-squares
method, obtain the separation vector x, and convert it into
the output images. We experimentally set A = 0.002 after
the grid search. We also try to use the regularization term
with an offset a = 0.5, i.e., min ||Ax — bH; +A|x— aH;, and
obtain the separation similar to that of LS-regul.

In addition, we employ the alternating direction method
of multipliers (ADMM) [1] to solve the reflection and
transmission components with the linear constraints that
the intensity values of reflection and transmission images are
within (0, 1). Considering the linear constraint, we formulate
the objective function as

min [|[Ax — b||5, st.0<z<1,z€x ?)

and employ the ADMM solver! to obtain the separation
vector x. We simultaneously optimize all the pixels in the sep-
aration image by the ADMM solver and conduct enormous
experiments to search for appropriate hyper-parameters in
the optimization. For better convergence, the reflection and
transmission vector x is initialized with the unpolarized
values® of the same pixel, and the penalty parameter p is
set to be 0.01. We observe the optimization takes about 100
iterations to reach convergence.

5,000 pairs of images from our synthetic validation
dataset with ground truth reflection and transmission are
used for comparisons between the least-squares method (LS-
regul.), ADMM, and the closed-form solution. The qualitative
results are shown in Figure 1, and quantitative evaluation is
listed in Table 1.

Despite that the least-squares method and the ADMM
solver perform better on recovering transmissions, they
produce much worse reflection layers compared to the closed-
form solution. The output of LS-regul. and ADMM is free of
cross-line issue, but the recovered reflection layers are still
affected by black pixels (LS-regul.) or transmission layers
(ADMM). LS-regul. and ADMM also fail to locally separate
the reflection and transmission (i.e., the helicopter in the
transmission in the second sample of Figure 1), introducing

1. https:/ /web.stanford.edu/~boyd/papers/admm/quadprog/
quadprog.html

2. We also try to initialize x with the closed-form solution and obtain
the similar separation results.
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TABLE 1: Quantitative comparisons among the least squares
with £, regularization, the optimization method using the
ADMM solver, and our closed-form solution.

Transmission Reflection Running time
SSIM  PSNR SSIM  PSNR  sec/(100 samples)
Ours-initial 0.8557 21.00 0.6497 15.88 0.019
LS-regul.  0.8997 25.07 0.4356 12.16 0.714
ADMM  0.9197 24.77 0.5941 15.59 8.654

ripple-like artifacts in reflection images. In contrast, our
method retains reflection information, and our refinement
and cross-line suppression network can well solve the cross-
line artifacts, as shown in our experiments. For ADMM,
it’s hard to select an appropriate penalty parameter to well
recover the reflection and transmission simultaneously. More-
over, we conduct experiments to compare the computational
costs of these methods on a single NVIDIA GeForce RTX
3090, and the results are listed in Table 1. ADMM is about
450 times slower than our method to converge to a high
accuracy, which is infeasible in real-time applications. Our
method directly obtains a closed-form solution instead of
having to calculate the inverse of a matrix, which has less
computational burden compared to LS-regul. Based on all
these points, the direct closed-form solution is more suitable
for our end-to-end framework.

APPENDIX B
MISALIGNMENT CAUSED BY THE BASELINE

We try to capture the paired (un)polarized images with two
parallel polarization cameras but find that this setup does not
work for our method. We notice that the baseline between
two cameras is too large, and it causes alignment issues
for reflection separations, even if we place the two cameras
side by side. It would be hard to simultaneously align the
reflection and transmission layers of the two captured images,
due to the baseline between two cameras and different depths
in reflection and transmission scenes. The aligned pixels in
the paired images are mixed from different points of the
scene, which violates the assumption of our method and
makes the per-pixel computation fail.

We illustrate this issue in Figure 2. As shown in Figure 2a,
when the transmission component dominates the mixture
image, the alignment module tends to register image pixels
corresponding to the same points in the transmission scene,
and an aligned pixel may correspond to different points
in the reflection scene. We provide a numerical analysis to
demonstrate the disparity in the reflection scenes, as listed
in Table 2a. We assume the binocular system consists of two
cameras with a baseline of 5 cm, which is denoted as b. The
distance from the transmission scene to the glass d; is about
500 cm, the distance from the reflection scene to the glass
d, is about 1,000 cm, and the distance from Cam; to the
glass is 40 cm. We assume the light ray is received by Cam;
with a reflection angle of 6; (¢; = 30°). According to the
principle of light propagation, we can compute the disparity
Az, in the reflection scene is about 5.3 cm®. The disparity

3. Similarly, we could calculate the disparity in the transmission scenes
when we align pixels with dominant reflection components, as listed in
Table 2b.

2

TABLE 2: Computed disparities in the reflection (transmis-
sion) scenes when aligning the pixels in the transmission
(reflection) scenes. The baseline between Cam; and Camsy, is
b. The light ray is received by Cam; with a reflection angle
of #1, and the rotation angle of the glass is represented as
. The distance from the glass to Cam; is denoted as d., the
distance from the glass to the reflection scene is denoted as
d,, and the distance from the glass to the transmission scene
is denoted as d;. Az, and Az, are disparities in the reflection
scene and in the transmission scene, respectively.

(a) Disparities in the reflection scene, when transmission
components dominate.

b 61 © de dy dr Axy
5.0 30.0° 30° 40 500 1,000 5.3
1.0 30.0° 30° 40 500 1,000 1.1

(b) Disparities in the transmission scene, when reflection
components dominate.

b 61 2] dc dt d'r Amt
5.0 30.0° 30° 40 1,000 500 5.3
1.0 30.0° 30° 40 1,000 500 1.1

will be enlarged as the baseline increases. Under this large
disparity, the same point of the transmission scene in the two
views may be mixed with different reflections, which violates
our assumption of the simultaneous alignment of reflection
and transmission. Our performance will degrade on such a
parallel camera rig. When capturing the real misaligned data
shown in Figure 12 of the main paper, we move the camera
within 1 cm between two shots, and the simulated reflection
disparity is less than 1.1 cm. This slight disparity may bring
small changes in reflection values and can be handled by our
pipeline.

In brief, our method could tolerate small misalignment
caused by rotating or (un)mounting the polarizer in the front
of the camera between two shots, but it is still challenging
to apply our method to the dual-camera rig with a relative
large baseline.

APPENDIX C
ADDITIONAL QUALITATIVE COMPARISONS ON THE
REAL-WORLD DATA

We show more separation results on the grayscale images
(16-bit format) compared with ReflectNet [2], Wen et al. [3],
Lei et al. [4], Zhang et al. [5], CORRN [6] and ERRNet [7], as
displayed in Figure 3.

REFERENCES

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,
2011.

P. Wieschollek, O. Gallo, J. Gu, and J. Kautz, “Separating reflection
and transmission images in the wild,” in Proc. ECCV, 2018.

[3] Q. Wen, Y. Tan, J. Qin, W. Liu, G. Han, and S. He, “Single image
reflection removal beyond linearity,” in Proc. CVPR, 2019.

C. Lei, X. Huang, M. Zhang, Q. Yan, W. Sun, and Q. Chen, “Polarized
reflection removal with perfect alignment in the wild,” in Proc. CVPR,
2020.

X. Zhang, R. Ng, and Q. Chen, “Single image reflection separation
with perceptual losses,” in Proc. CVPR, 2018.

2

—

[4

—

[5

—_



IEEE TRANSACATIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

ed img Unpola

e oK)

Unpolarized img  Polariz

] fa ¥

4

Input

rized img Polarized img

Polarized img

|

Unpolarized img

LS regul. Ours-initial GT

ADMM

Reflection

Fig. 1: Qualitative comparisons between our closed-form solution and the results of the least squares and ADMM, evaluated
on synthetic data. The least-squares method with regularization and ADMM fail to separate some part of the image and

introduce ripple-like artifacts in the reflection images.
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(a) When the transmission component is dominant in the mix-
ture image, the model tends to align the pixels corresponding to
the same point in the transmission scene, and the misalignment
of the reflection scene may occur.
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(b) When the reflection component dominates the mixture
image, the model tends to align the pixels corresponding to the
same point in the reflection scene, and the misalignment of the
transmission scene may occur.

Fig. 2: [llustration of the misalignment of reflection scenes and transmission scenes in a binocular camera system.
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